The snowball effect I was writing about is also very evident in the design of the MacBook Air. I’ve posted before about some aspects of this (I was wrong about it having fewer internal screws, though).

Just saw this: Japanese engineers trash MacBook Air. Here’s the original article in somewhat clumsy English. Some choice quotes:

“Can we say that the MacBook Air has a perfect, sophisticated external appearance, but its insides are full of waste?”

What astonished all those engineers was the fact that the computer had a very costly structure. For example, it used an extremely large number of screws to attach components. About 30 screws were used to attach the keyboard alone.

“When it comes to Japanese PC manufacturers, their manufacturing plants will complain or add their own technical efforts to lower cost, if a proposed structural design was insufficient,” one of the engineers said. “The MacBook Air gives me an impression that its manufacturing plant packaged the computer exactly as ordered by Apple.”

Based on the results of our teardown project, we guess Apple is not paying much attention to both workmanship of the hardware design and comprehensive cost reduction…The MacBook Air’s mysterious internal design might be a violent antithesis against Japanese manufacturing, which allows no compromise even in detailed parts of the hardware.

This is a very interesting insight into manufacturing. Can you imagine Steve Jobs’ reaction to somebody at the Air factory deciding to take out 25 of the 30 screws that hold the keyboard? Heads would roll!

No doubt all those screws (and the other things they considered “waste”) contribute to the Air’s extremely solid feel that’s remarked upon by everybody who has handled one. Contrast this to all the “this thing must be soo fragile” comments, just after the launch, by people who had not handled one. Obviously people are used to small electronic devices following the (apparent) Japanese practice of shaving off internal “waste” to save a little space and money and ignore the consequence of a flimsy feel… something that would be especially accentuated in such a thin device as the Air.

So, this article betrays a fundamental misunderstanding of Apple’s design strengths and intentions. Their definition of “workmanship and… cost reduction” is very different. From what I can tell, the Air was designed from the outset to be extremely thin and rugged, while maintaining adequate battery life and performance. These considerations snowball to the extent that the battery uses up 2/3 of the space, and seems to be (along with the keyboard) itself a structural element.

Everything else flows logically from that. To put in a FireWire connector means reserving resources for a 7W additional power drain – that’s 1A extra current at the 7.2V battery. It also means an extra power supply to jack this up to the 9 to 12V required at the connector, extra PCB traces, and so forth. The battery has a capacity of 37 watt-hours, meaning that at the rated duration of 5 hours, the average power draw is slightly over 7W; this would double when a FireWire drive is connected, meaning battery life would be only half, 2.5 hours. Also, the extra connector would mean widening the flip-down door and shaving off maybe 2cm off the battery on that side… more capacity reduction. The 45W external power supply would also have to be beefed up, and the internal charging circuitry as well… this means more heat dissipation. It would probably have been necessary to make the battery itself thicker, maybe 5mm or more.

Now look at a typical Ethernet connector; it’s thicker than the Air’s door, so some millimeters would have had to be added to the Air’s thickness, too; as well as taking the extra chunk out of the battery as well.

Same applies to an internal DVD drive. If it doesn’t work as a burner too, they’d have complained – but imagine the power requirements, or read the Lenovo x300 review; Lenovo engineers are very capable too, but they decided on different trade-offs. I have handled some other brands of small laptops from Toshiba and I must say I was unimpressed by the feel and finish.

Finally, imagine the Air with a removable battery. This means extra connectors, a case opening, of course with either a full-width extra wall (meaning at least 4mm extra thickness) or some heavy-duty latches (considering the battery is 2/3 of the size and a similar proportion of the weight of the Air). Consider the loss of rigidity that would imply, and the extra size and weight that would have to be “wasted” to counteract that.

So that’s my point. Any change in the Air’s design immediately snowballs into a larger, heavier, hotter and (probably) less solid-feeling machine. Jobs obviously thought it was worthwhile to concentrate on those aspects, and it’s rather shortsighted to conclude that “Apple is not paying much attention to … workmanship”.