This is a follow-up to my post about Apple’s new Lightning mobile connector. Thanks to all who linked or commented.

Apple has since published mechanical drawings of the iPhone 5, iPod nano 7th gen, and iPod touch 5th gen. The nano’s drawing has the best illustration of the connector side:

Applying the known width of 10.02mm to the connector photos, it would seem that the projecting part of the plug is about 1.6mm thick and 6.9mm wide. It so happens that this matches closely the standard printed circuit board thickness of 63 mils (1.57mm). The conclusion is clear: the plug consists of a PCB with 8 contacts on each side in a protective metal cladding. The PCB inside the plug’s body will have components on each side; remember the Thunderbolt cable teardown?

The actual interface specifications are still not available to the public – in fact, I think the old 30-pin connector specs never were officially available. What information we have is reverse-engineered or leaked from companies that are in Apple’s MFi program. But connector trends are clear. Some of you may remember the old SCSI 50-pin and Centronics 36-pin connectors; both interface were comparatively low-speed parallel and were substituted by higher-speed USB and FireWire serial interfaces. Thunderbolt, for instance, despite its relatively numerous 20 pins, is a serial interface. It has two full-duplex, differential, 10Gbps data paths (meaning 2 pin for each of 4 transmit/receive pair) as well as two low-speed transmit/receive pins, a connector sensing pin, a power pin, and several ground/shield pins. This is still overkill for the new generation of mobile devices, hence Lightning, which has only 8 pins (plus the outer ground/shield) and, no doubt, lower speeds.

So what are the technical reasons to go with Yet Another Proprietary Connector? Apple has, of course, gone down that road so often that their engineers are well-aware of the tradeoffs involved. We’ve seen the same happen a year or two ago: instead of going to USB3 or eSATA for external devices, they developed Thunderbolt (together with Intel), which is both faster and much more flexible.

Many people complain that Apple should have chosen micro-USB instead of a proprietary connector. The micro-B connector is almost exactly the same size as the Lightning, though it has only 5 pins and is not reversible. The USB3 version of micro-B has 5 extra pins in a separate section and twice the width of the USB2 version. USB3 has actually two different pin groups: one implements the USB2 standard while 2 extra signal pairs handle the new specification. As I mentioned before, usually the USB2 version has limited current carrying capability which would make it unsuitable for the upcoming Lightning iPad; the USB3 version has enough capability but is larger. Non-standard variations are already on the market, and yes, some connector manufacturers are now specifying higher current capacity on the two power pins. True, there are standards being implemented that expand these limits even more, but they’re not quite on the market yet.

Designing an interface means balancing many technical and design trade-offs, especially for a mobile device where device volume, battery capacity, thermal limitations, available PCB area, charging parameters and statistics of intended use all impose serious constraints. Let’s for the moment posit Apple had gone the micro-USB3 route. This would mean a dedicated USB3 host controller/transceiver chip like the TI TUSB1310A as well as several added passive components. This representative chip actually contains a secondary USB2 controller/transceiver for compatibility, has a peak power comsumption of nearly 0.5W while operational and requires 3 different power supplies. The chip alone is over 12x12mm square. More important, Apple’s SoC (system-on-a-chip) design means that their main chip has to implement the transceivers’ dual data interface and various control signals; several dozen of the chip’s 175 pins would connect to the SoC, needing additional PCB space.

In contrast, support for Lightning will probably need no extra chips and less than a dozen extra pins on the SoC; 8 of these will go straight to the connector. One or two of the pins will probably sense which kind of adapter or charger/cable is connected and the others will go, in parallel, to the power controller – switching them will allow enough current for charging without overloading any particular pin. Any current-hungry drivers, signal converters and so forth wouldn’t on the motherboard at all but inside the plug itself, further reducing cost and power consumption for the bare device. The interface may even be self-clocking, with a clock signal routed to the connector whenever necessary, so future system could implement higher speeds.

All this flexibility means that, probably, the Lightning-to-USB2 cable included with the current devices has a driver/signal conditioner chip embedded inside the plug. Any standard charger may be used but Apple’s charger already has a way of signaling its capabilities to the device. The Lightning-to-30pin adapters have, in addition, at least a stereo D/A converter for line audio out and. Upcoming HDMI and VGA adapters will receive audio/video signals in serial form and convert them to the appropriate formats. Third parties can, should Apple’s software allow it, build audio inputs, digital samplers, video-in or medical instrumentation adapters. All this without impacting users who need none of these adapters, but just want to charge their device.

Could all this also be done with USB2 or 3? Well, in principle, yes, but at a cost. Other manufacturers are using, for instance, MHL, which passes audio/video over the USB connector. However, this simply repurposes the connector itself – you need a separate controller chip to generate the MHL signals while the USB controller is turned off, unless you make yet another non-standard plug. (Note that MHL adapters are in the same price range as Apple’s adapter, so nothing gained there either.)

Update: forgot to mention that, with the assumptions above, nothing but SoC speed restrictions preclude Apple from releasing a Lightning-to-USB3 cable in the future.

Update#2: my comments on the physical details of the connector.

Update#3: my final summary. Please comment there, comments here are now closed.